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A BSTRA CT

In this article the dual of the multi-facil i ty location problem with

arbitrary norms is developed. The formulation allows any number of linear

const raints in the primal .  It is shown that the multipliers associated with

the linea r equations of the dual are the optimal facility locations of the

pri mal.  ;
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ON THE DUAL OF THE LI NEARLY CONSTRAINED MULTI-FACIL I TY

LOCATION PROBLEM WITH ARBITRARY NORMS t

Henrik Juel and Robert Love*

We consider the problem

minimize 
~~ ~~~~~~~~~~~~~~~ — a~ ) + 

~~~~~~ ~~~~~ 
w
2~~

X 21~~(x~ — X
j
)

subject to 
~~~ 

A~x~ c b ..

m and n are the number of existing and new facilities , respec t ive ly, and d is

the dimensi on of the facility space. W1.j is the non-negative wei ght and

K11~ (.) is the norm on R
d
, to be used be twee n exis ting facility i and new

facili ty j for 1 < I < m , 1 < j < n. W 21j is the non—ne gat ive weigh t and

is the norm on Rd , to be used between new facilities I and j for

i < i < < n. a~ c is the location of existing facili ty I for 1 < I <

and X
j 

£ R
d 

Is the unknown location of new facility j for 1 C j < n. I linear

constraints on the locations of the new facilities are expressed using n i. x d

matrices for 1 < 3 < n and the i-vector b.

This article generalizes and synthesizes some results obtained by Love [1]

and Planchart and Hurter (4). Using elements from conjugate function theory

as exposi ted by W itzgall (3), we shall fi nd the dual, of the location problem.

t Sponsored in part  by the United States Army under  Contract No. DAAGZ 9-75 -
C-0024 . This research was supported by grants  from the Graduate School of
the Universi ty of Wisconsin ;  use of the Univers i ty  of Wisconsin Computing
Center under these grants  was made possible through support , In part , from the
National Science Foundat ion , other U . S .  government agencies and the
Wisconsin Alumni Research Foundation.
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Let super sc ri pt c denote the conjugate junction corresponding to a convex

func tion , and superscrip t o denote the polar corresponding to a norm. It in

convenient to let ~
T (4, 4, ..., x1’~ and A - (A 1, A2 ... ,  An

). Then
Ii 

1 3 a
Ax — )~~—~ 

A
3
x
3
. For 1 C j C m , and 1 < 3 < it , let 1

113 
— (O,O,...O,I,0,0,... ,0)

be a d x ad matrix consisting of n d x d submatrices , each of which is a null—

matrix , except the j t h , which is an iden tity matrix. Then x4 — B114x. For
1 i 3 n J

1 C i < 3 < n, let B
213 

(0 ,0,... ,0,I,O,0,. . . ,0,—l ,0,0... ,0) be a d x nd matrix
consis ting of a d x d submatrices , each of which is a null—ma trix , except the

ith , which is an iden tity matrix and the jth , which is a negative identity

matrix, Wi th this notation, we can write down a number of functions occurring

in the location problem and find the conjugate functions .

For 1 C i C m , and 1 
~ 3 < n , let f

1~3
(x) w

113
K
113

(B
1~3

x—a
1), so we have

T of~ y i f K  ( ) < w
1
c (1T ~ 

1 113 lij lij — lii
113 113 113 othe rwise

For 1 < i < 3 < a let f 2~ 3
(x) w 213

K 2~ 3
(B 213 x) ,  so we have

f
C BT Jo if K~ ij (Y 2ij ) ~~w 213
213 2ij~

’2ij 1
(,“ otherwise

(0 if A x < b
Let f 3

(x) — 
— 

. Then f~ (a 3) — sup(z~x:A~ b) — inf{b
Ty 3 : A

Ty
3
_ z31y 3~O)• otherwise

by the theory of linear prograsu~ing.

Finally, let f (x) 
~i—l ~j—l 

f
113 (~) + 

~~~~~~~~~~ 
f
213

(x) + f3(x),  so

the location problem is: minimize f(x).

For the dual we get :
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f
C (0) — in f (~~,,1 Z ,..~ 

a~Y11,~ 
+ in! (bTy3:ATy3 — z

3
, y

3 
> 0) :

m a T n-l n T o

~1ij ~~ + ~~~~~~~ ~~~~~~~~ 
1
213 

+ — 0; K
1~3

(~113
) ~~w113

1 < i < m, 1 < 3 c n; K2i3
(y2ij

) < w
213

, 1 < i < 3 < a)  —

ii a T T
inf(

~j.,.i ~j—l 
a1 y1,~3 

+ b Y3.

3-1 T 0
X1.1 Y1i3 — 

~~~~~~ Y~ 1~ 
+ ~ y 21

A~~~3 
= 0, l~~j~~r’; $ w

1~~
,

1 < i c m, 1 < 3 ~~, a; 413(y 213) ~~w213, 1 c I < 3 < a , y3 < 0).

The dual of the location problem may be written as

a n T . Tmaxi m iz e - 
~i’~1 ~~~~~~~ 

a~ y1~3 
— b y3

subjec t to 
~~~~ 

Y113 
— Y~13 

+ )~ =~~ 1Y 2i3 + A~y 3 
= 0 for 1 < 3 < a ,

413(y1~
) < w

113 
for 1 < i < a  and 1 < 3 ~

~~ij ~~
’2i j~ ~ 

w2.~ for 1 c I < 3 <

y3 ~ 
0.

This dual may be t ransformed back into the loca t ion problem, using differentiable

duality the ory as exposited by Luenberger (3). Consider the problem (P):

maximize p (y) subjec t to g (y) < 0, h(y) — 0 (ycR15

where p ( .)  is a differen t i able concave real—valued function , g ( -)  is a dif fer—

enti able vector-valued funct ion with convex component functions and h(’) is an

eff Inc function. A dual of proble m (P) is this problem (D):

minimi ze d( x) max(p(y) + xTh(y):g(y) < 0) .

In a similar manner to the development by L uenberger [3), we may arrive at the

following facts:



1. p(y) c d(x )  for  all y with  g(y)  0 , h(y) — 0 and all x.

2. Let a constraint qual i f ica t ion hold for problem (P) . If y0 solves

problem (P) with multiplier vector x1~ corresponding to the equality

constraints, then x solves pro’lem CD) and p(y0
) — d(x0).

These facts cannot be applied directly to the dual of the location problem,

since the functions in the nonlinear constraints are norms and thus not dif-

ferentiable. For many norms, however, a simple transformation will yield a

differentiable function. Consider, for instance, the norm K on R
d given by

K(x) — I~ (C~) where C is a non—singular d x d matrix and £~~(z
1~~z2~~.. . ,zd) —

~~~~ z~,1l3
11P. The inequality K(x) c w is equivalent to (K(x))1’ < VP, in

which inequality the left—hand side is a differentiable function for p > 1.

For simplicity, we do not exhibit such transformations explicitly in the fol-

lowing.

Taking the dual of the location problem as (P), we obtain for problem (D):

a n Td(x) max{_}1,_1 ~~~~~ 
a
1 y113 

— b y
3 
+

i’m T,rTh vJ’ l + T
~~~ 

X
J tL1...1 Y113 

— Lj..1 Y213 Lj..j+l Y211 + A
3
y
3

~ ~ .~~ 1 ~ ~~ ~ ~ n; $ij~~2ij~ ~2ij~ ~ I < 3 a , y~~0)

it T o
— Ii..l ~~

_l lnax((x3 
— $

j ) r
113 

. K
113

(y
113
) ~,w113

) +

n—i n T 0

~i—l 
}i—i+i 

aax( (x~ x
3
) 
~
‘2ij ‘ 

K
213(7213

) cw 2ij
) +

aax( ()~~,1 A
3

x
3 

— b) Ty3 : 73 > 0)~

Using the properties of polars of norms [5), problem (D) is thus identical to

the original location prob lem.
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The location problem can be solved by solving its dual by some standard

nonlinear programming algorithm , the optimal locations being thi optima l mul-

tiplier vecto r s corresponding to the equality constraints. Our computational

experience, however , seems to indicate that , from the viewpoint of computation

time, it is 8omewhat more efficient to solve the location problem directl y ,

using differentiable approximations to the norms involved [2). (Some may find

the dual form easier to program , however , due to the simple nature of the de-

rivatives of the objective function and constraints.) The special sirucrure

of the dual can be exploited to solve it using dec~ompos it i on  as sugges ted  by

Love [1) and Planchart and Hurter L 4 ) .  Even this t echn l i~ ie f o r  solving the

location problem seems less efficient than either solving the primal form or

solving the dual directly with a nonlinear p r o g r a m m i n g  r o u t i n e .
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